Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{4}2x\times \frac{3}{2}+\frac{3}{2}\mathrm{d}x
Use the distributive property to multiply 2x+1 by \frac{3}{2}.
\int _{0}^{4}3x+\frac{3}{2}\mathrm{d}x
Cancel out 2 and 2.
\int 3x+\frac{3}{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int 3x\mathrm{d}x+\int \frac{3}{2}\mathrm{d}x
Integrate the sum term by term.
3\int x\mathrm{d}x+\int \frac{3}{2}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{3x^{2}}{2}+\int \frac{3}{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 3 times \frac{x^{2}}{2}.
\frac{3x^{2}+3x}{2}
Find the integral of \frac{3}{2} using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{3}{2}\times 4^{2}+\frac{3}{2}\times 4-\left(\frac{3}{2}\times 0^{2}+\frac{3}{2}\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
30
Simplify.