Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{4}4-\left(x^{2}-4x+4\right)\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
\int _{0}^{4}4-x^{2}+4x-4\mathrm{d}x
To find the opposite of x^{2}-4x+4, find the opposite of each term.
\int _{0}^{4}-x^{2}+4x\mathrm{d}x
Subtract 4 from 4 to get 0.
\int -x^{2}+4x\mathrm{d}x
Evaluate the indefinite integral first.
\int -x^{2}\mathrm{d}x+\int 4x\mathrm{d}x
Integrate the sum term by term.
-\int x^{2}\mathrm{d}x+4\int x\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{x^{3}}{3}+4\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
-\frac{x^{3}}{3}+2x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 4 times \frac{x^{2}}{2}.
-\frac{4^{3}}{3}+2\times 4^{2}-\left(-\frac{0^{3}}{3}+2\times 0^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{32}{3}
Simplify.