Evaluate
20
Share
Copied to clipboard
\int _{0}^{3}5\left(2-\frac{2}{3}x\right)^{2}\mathrm{d}x
Multiply 2-\frac{2}{3}x and 2-\frac{2}{3}x to get \left(2-\frac{2}{3}x\right)^{2}.
\int _{0}^{3}5\left(4-\frac{8}{3}x+\frac{4}{9}x^{2}\right)\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\frac{2}{3}x\right)^{2}.
\int _{0}^{3}20+5\left(-\frac{8}{3}\right)x+5\times \frac{4}{9}x^{2}\mathrm{d}x
Use the distributive property to multiply 5 by 4-\frac{8}{3}x+\frac{4}{9}x^{2}.
\int _{0}^{3}20+\frac{5\left(-8\right)}{3}x+5\times \frac{4}{9}x^{2}\mathrm{d}x
Express 5\left(-\frac{8}{3}\right) as a single fraction.
\int _{0}^{3}20+\frac{-40}{3}x+5\times \frac{4}{9}x^{2}\mathrm{d}x
Multiply 5 and -8 to get -40.
\int _{0}^{3}20-\frac{40}{3}x+5\times \frac{4}{9}x^{2}\mathrm{d}x
Fraction \frac{-40}{3} can be rewritten as -\frac{40}{3} by extracting the negative sign.
\int _{0}^{3}20-\frac{40}{3}x+\frac{5\times 4}{9}x^{2}\mathrm{d}x
Express 5\times \frac{4}{9} as a single fraction.
\int _{0}^{3}20-\frac{40}{3}x+\frac{20}{9}x^{2}\mathrm{d}x
Multiply 5 and 4 to get 20.
\int 20-\frac{40x}{3}+\frac{20x^{2}}{9}\mathrm{d}x
Evaluate the indefinite integral first.
\int 20\mathrm{d}x+\int -\frac{40x}{3}\mathrm{d}x+\int \frac{20x^{2}}{9}\mathrm{d}x
Integrate the sum term by term.
\int 20\mathrm{d}x-\frac{40\int x\mathrm{d}x}{3}+\frac{20\int x^{2}\mathrm{d}x}{9}
Factor out the constant in each of the terms.
20x-\frac{40\int x\mathrm{d}x}{3}+\frac{20\int x^{2}\mathrm{d}x}{9}
Find the integral of 20 using the table of common integrals rule \int a\mathrm{d}x=ax.
20x-\frac{20x^{2}}{3}+\frac{20\int x^{2}\mathrm{d}x}{9}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -\frac{40}{3} times \frac{x^{2}}{2}.
20x-\frac{20x^{2}}{3}+\frac{20x^{3}}{27}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply \frac{20}{9} times \frac{x^{3}}{3}.
20\times 3-\frac{20}{3}\times 3^{2}+\frac{20}{27}\times 3^{3}-\left(20\times 0-\frac{20}{3}\times 0^{2}+\frac{20}{27}\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
20
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}