Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{3}5\left(2-\frac{2}{3}x\right)^{2}\mathrm{d}x
Multiply 2-\frac{2}{3}x and 2-\frac{2}{3}x to get \left(2-\frac{2}{3}x\right)^{2}.
\int _{0}^{3}5\left(4-\frac{8}{3}x+\frac{4}{9}x^{2}\right)\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\frac{2}{3}x\right)^{2}.
\int _{0}^{3}20+5\left(-\frac{8}{3}\right)x+5\times \frac{4}{9}x^{2}\mathrm{d}x
Use the distributive property to multiply 5 by 4-\frac{8}{3}x+\frac{4}{9}x^{2}.
\int _{0}^{3}20+\frac{5\left(-8\right)}{3}x+5\times \frac{4}{9}x^{2}\mathrm{d}x
Express 5\left(-\frac{8}{3}\right) as a single fraction.
\int _{0}^{3}20+\frac{-40}{3}x+5\times \frac{4}{9}x^{2}\mathrm{d}x
Multiply 5 and -8 to get -40.
\int _{0}^{3}20-\frac{40}{3}x+5\times \frac{4}{9}x^{2}\mathrm{d}x
Fraction \frac{-40}{3} can be rewritten as -\frac{40}{3} by extracting the negative sign.
\int _{0}^{3}20-\frac{40}{3}x+\frac{5\times 4}{9}x^{2}\mathrm{d}x
Express 5\times \frac{4}{9} as a single fraction.
\int _{0}^{3}20-\frac{40}{3}x+\frac{20}{9}x^{2}\mathrm{d}x
Multiply 5 and 4 to get 20.
\int 20-\frac{40x}{3}+\frac{20x^{2}}{9}\mathrm{d}x
Evaluate the indefinite integral first.
\int 20\mathrm{d}x+\int -\frac{40x}{3}\mathrm{d}x+\int \frac{20x^{2}}{9}\mathrm{d}x
Integrate the sum term by term.
\int 20\mathrm{d}x-\frac{40\int x\mathrm{d}x}{3}+\frac{20\int x^{2}\mathrm{d}x}{9}
Factor out the constant in each of the terms.
20x-\frac{40\int x\mathrm{d}x}{3}+\frac{20\int x^{2}\mathrm{d}x}{9}
Find the integral of 20 using the table of common integrals rule \int a\mathrm{d}x=ax.
20x-\frac{20x^{2}}{3}+\frac{20\int x^{2}\mathrm{d}x}{9}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -\frac{40}{3} times \frac{x^{2}}{2}.
20x-\frac{20x^{2}}{3}+\frac{20x^{3}}{27}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply \frac{20}{9} times \frac{x^{3}}{3}.
20\times 3-\frac{20}{3}\times 3^{2}+\frac{20}{27}\times 3^{3}-\left(20\times 0-\frac{20}{3}\times 0^{2}+\frac{20}{27}\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
20
Simplify.