Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{4}-8x^{3}+5x-10\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{4}\mathrm{d}x+\int -8x^{3}\mathrm{d}x+\int 5x\mathrm{d}x+\int -10\mathrm{d}x
Integrate the sum term by term.
\int x^{4}\mathrm{d}x-8\int x^{3}\mathrm{d}x+5\int x\mathrm{d}x+\int -10\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{5}}{5}-8\int x^{3}\mathrm{d}x+5\int x\mathrm{d}x+\int -10\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{x^{5}}{5}-2x^{4}+5\int x\mathrm{d}x+\int -10\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -8 times \frac{x^{4}}{4}.
\frac{x^{5}}{5}-2x^{4}+\frac{5x^{2}}{2}+\int -10\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 5 times \frac{x^{2}}{2}.
\frac{x^{5}}{5}-2x^{4}+\frac{5x^{2}}{2}-10x
Find the integral of -10 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{3^{5}}{5}-2\times 3^{4}+\frac{5}{2}\times 3^{2}-10\times 3-\left(\frac{0^{5}}{5}-2\times 0^{4}+\frac{5}{2}\times 0^{2}-10\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{1209}{10}
Simplify.