Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{3}\left(9x^{2}-12x+4\right)\left(2x-3\right)\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2\right)^{2}.
\int _{0}^{3}18x^{3}-51x^{2}+44x-12\mathrm{d}x
Use the distributive property to multiply 9x^{2}-12x+4 by 2x-3 and combine like terms.
\int 18x^{3}-51x^{2}+44x-12\mathrm{d}x
Evaluate the indefinite integral first.
\int 18x^{3}\mathrm{d}x+\int -51x^{2}\mathrm{d}x+\int 44x\mathrm{d}x+\int -12\mathrm{d}x
Integrate the sum term by term.
18\int x^{3}\mathrm{d}x-51\int x^{2}\mathrm{d}x+44\int x\mathrm{d}x+\int -12\mathrm{d}x
Factor out the constant in each of the terms.
\frac{9x^{4}}{2}-51\int x^{2}\mathrm{d}x+44\int x\mathrm{d}x+\int -12\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 18 times \frac{x^{4}}{4}.
\frac{9x^{4}}{2}-17x^{3}+44\int x\mathrm{d}x+\int -12\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -51 times \frac{x^{3}}{3}.
\frac{9x^{4}}{2}-17x^{3}+22x^{2}+\int -12\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 44 times \frac{x^{2}}{2}.
\frac{9x^{4}}{2}-17x^{3}+22x^{2}-12x
Find the integral of -12 using the table of common integrals rule \int a\mathrm{d}x=ax.
22\times 3^{2}-12\times 3-17\times 3^{3}+\frac{9}{2}\times 3^{4}-\left(22\times 0^{2}-12\times 0-17\times 0^{3}+\frac{9}{2}\times 0^{4}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{135}{2}
Simplify.