Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{3}10x^{5}\mathrm{d}x
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
\int 10x^{5}\mathrm{d}x
Evaluate the indefinite integral first.
10\int x^{5}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{5x^{6}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}. Multiply 10 times \frac{x^{6}}{6}.
\frac{5}{3}\times 3^{6}-\frac{5}{3}\times 0^{6}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
1215
Simplify.