Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. p
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{3}ex^{3}p\mathrm{d}x
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\int ex^{3}p\mathrm{d}x
Evaluate the indefinite integral first.
ep\int x^{3}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
ep\times \frac{x^{4}}{4}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{epx^{4}}{4}
Simplify.
\frac{1}{4}ep\times 3^{4}-\frac{1}{4}ep\times 0^{4}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{81ep}{4}
Simplify.