Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. n
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{8x\left(n^{2}-3\right)}{27}\mathrm{d}x
Evaluate the indefinite integral first.
\frac{8\left(n^{2}-3\right)}{27}\int x\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{8\left(n^{2}-3\right)}{27}\times \frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{4\left(n^{2}-3\right)x^{2}}{27}
Simplify.
\frac{4}{27}\left(n^{2}-3\right)\times 2^{2}-\frac{4}{27}\left(n^{2}-3\right)\times 0^{2}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{16n^{2}}{27}-\frac{16}{9}
Simplify.