Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{2}+\frac{x^{4}}{3}\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int \frac{x^{4}}{3}\mathrm{d}x
Integrate the sum term by term.
\int x^{2}\mathrm{d}x+\frac{\int x^{4}\mathrm{d}x}{3}
Factor out the constant in each of the terms.
\frac{x^{3}+\int x^{4}\mathrm{d}x}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}+\frac{x^{5}}{15}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply \frac{1}{3} times \frac{x^{5}}{5}.
\frac{2^{3}}{3}+\frac{2^{5}}{15}-\left(\frac{0^{3}}{3}+\frac{0^{5}}{15}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{24}{5}
Simplify.