Evaluate
-\frac{2}{3}\approx -0.666666667
Share
Copied to clipboard
\int 2-y-y^{2}\mathrm{d}y
Evaluate the indefinite integral first.
\int 2\mathrm{d}y+\int -y\mathrm{d}y+\int -y^{2}\mathrm{d}y
Integrate the sum term by term.
\int 2\mathrm{d}y-\int y\mathrm{d}y-\int y^{2}\mathrm{d}y
Factor out the constant in each of the terms.
2y-\int y\mathrm{d}y-\int y^{2}\mathrm{d}y
Find the integral of 2 using the table of common integrals rule \int a\mathrm{d}y=ay.
2y-\frac{y^{2}}{2}-\int y^{2}\mathrm{d}y
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y\mathrm{d}y with \frac{y^{2}}{2}. Multiply -1 times \frac{y^{2}}{2}.
2y-\frac{y^{2}}{2}-\frac{y^{3}}{3}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{2}\mathrm{d}y with \frac{y^{3}}{3}. Multiply -1 times \frac{y^{3}}{3}.
2\times 2-\frac{2^{2}}{2}-\frac{2^{3}}{3}-\left(2\times 0-\frac{0^{2}}{2}-\frac{0^{3}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{2}{3}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}