Evaluate
\frac{206}{15}\approx 13.733333333
Share
Copied to clipboard
\int _{0}^{2}\left(y^{2}\right)^{2}+2y^{2}+1\mathrm{d}y
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y^{2}+1\right)^{2}.
\int _{0}^{2}y^{4}+2y^{2}+1\mathrm{d}y
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\int y^{4}+2y^{2}+1\mathrm{d}y
Evaluate the indefinite integral first.
\int y^{4}\mathrm{d}y+\int 2y^{2}\mathrm{d}y+\int 1\mathrm{d}y
Integrate the sum term by term.
\int y^{4}\mathrm{d}y+2\int y^{2}\mathrm{d}y+\int 1\mathrm{d}y
Factor out the constant in each of the terms.
\frac{y^{5}}{5}+2\int y^{2}\mathrm{d}y+\int 1\mathrm{d}y
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{4}\mathrm{d}y with \frac{y^{5}}{5}.
\frac{y^{5}}{5}+\frac{2y^{3}}{3}+\int 1\mathrm{d}y
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{2}\mathrm{d}y with \frac{y^{3}}{3}. Multiply 2 times \frac{y^{3}}{3}.
\frac{y^{5}}{5}+\frac{2y^{3}}{3}+y
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}y=ay.
y+\frac{2y^{3}}{3}+\frac{y^{5}}{5}
Simplify.
2+\frac{2}{3}\times 2^{3}+\frac{2^{5}}{5}-\left(0+\frac{2}{3}\times 0^{3}+\frac{0^{5}}{5}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{206}{15}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}