Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{2}1+2x^{2}+\left(x^{2}\right)^{2}\mathrm{d}x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x^{2}\right)^{2}.
\int _{0}^{2}1+2x^{2}+x^{4}\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\int 1+2x^{2}+x^{4}\mathrm{d}x
Evaluate the indefinite integral first.
\int 1\mathrm{d}x+\int 2x^{2}\mathrm{d}x+\int x^{4}\mathrm{d}x
Integrate the sum term by term.
\int 1\mathrm{d}x+2\int x^{2}\mathrm{d}x+\int x^{4}\mathrm{d}x
Factor out the constant in each of the terms.
x+2\int x^{2}\mathrm{d}x+\int x^{4}\mathrm{d}x
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}x=ax.
x+\frac{2x^{3}}{3}+\int x^{4}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 2 times \frac{x^{3}}{3}.
x+\frac{2x^{3}}{3}+\frac{x^{5}}{5}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{x^{5}}{5}+\frac{2x^{3}}{3}+x
Simplify.
\frac{2^{5}}{5}+\frac{2}{3}\times 2^{3}+2-\left(\frac{0^{5}}{5}+\frac{2}{3}\times 0^{3}+0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{206}{15}
Simplify.