Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{2}\frac{\left(x-5\right)\left(x+3\right)}{x-5}\mathrm{d}x
Factor the expressions that are not already factored in \frac{x^{2}-2x-15}{x-5}.
\int _{0}^{2}x+3\mathrm{d}x
Cancel out x-5 in both numerator and denominator.
\int x+3\mathrm{d}x
Evaluate the indefinite integral first.
\int x\mathrm{d}x+\int 3\mathrm{d}x
Integrate the sum term by term.
\frac{x^{2}}{2}+\int 3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{x^{2}}{2}+3x
Find the integral of 3 using the table of common integrals rule \int a\mathrm{d}x=ax.
3\times 2+\frac{2^{2}}{2}-\left(3\times 0+\frac{0^{2}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
8
Simplify.