Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{9x^{2}y^{2}}{64}\mathrm{d}x
Evaluate the indefinite integral first.
\frac{9y^{2}}{64}\int x^{2}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{9y^{2}}{64}\times \frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{3y^{2}x^{3}}{64}
Simplify.
\frac{3}{64}y^{2}\times 2^{3}-\frac{3}{64}y^{2}\times 0^{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{3y^{2}}{8}
Simplify.