Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{9y}{2}\mathrm{d}y
Evaluate the indefinite integral first.
\frac{9\int y\mathrm{d}y}{2}
Factor out the constant using \int af\left(y\right)\mathrm{d}y=a\int f\left(y\right)\mathrm{d}y.
\frac{9y^{2}}{4}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y\mathrm{d}y with \frac{y^{2}}{2}.
\frac{9}{4}\times 2^{2}-\frac{9}{4}\times 0^{2}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
9
Simplify.