Evaluate
\pi \left(1-\cos(49)\right)\approx 2.197253326
Share
Copied to clipboard
\int \int _{0}^{7}\sin(r^{2})r\mathrm{d}r\mathrm{d}\theta
Evaluate the indefinite integral first.
\int _{0}^{7}\sin(r^{2})r\mathrm{d}r\theta
Find the integral of \int _{0}^{7}\sin(r^{2})r\mathrm{d}r using the table of common integrals rule \int a\mathrm{d}\theta =a\theta .
\frac{1}{2}\left(2\left(-\frac{\cos(49)}{2}\right)+1\right)\theta
Simplify.
2\left(-\frac{1}{2}\cos(49)+\frac{1}{2}\right)\pi +0\left(-\frac{1}{2}\cos(49)+\frac{1}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\pi \left(-\cos(49)+1\right)
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}