Evaluate
\frac{2\left(-4\log(x)+3\right)\log(x)^{2}}{3}
Differentiate w.r.t. x
\frac{4\log(e)\log(x)\left(-2\log(x)+1\right)}{x}
Share
Copied to clipboard
\int r-r^{2}\mathrm{d}r
Evaluate the indefinite integral first.
\int r\mathrm{d}r+\int -r^{2}\mathrm{d}r
Integrate the sum term by term.
\int r\mathrm{d}r-\int r^{2}\mathrm{d}r
Factor out the constant in each of the terms.
\frac{r^{2}}{2}-\int r^{2}\mathrm{d}r
Since \int r^{k}\mathrm{d}r=\frac{r^{k+1}}{k+1} for k\neq -1, replace \int r\mathrm{d}r with \frac{r^{2}}{2}.
\frac{r^{2}}{2}-\frac{r^{3}}{3}
Since \int r^{k}\mathrm{d}r=\frac{r^{k+1}}{k+1} for k\neq -1, replace \int r^{2}\mathrm{d}r with \frac{r^{3}}{3}. Multiply -1 times \frac{r^{3}}{3}.
\frac{1}{2}\times \left(2\ln(x)\ln(10)^{-1}\right)^{2}-\frac{1}{3}\times \left(2\ln(x)\ln(10)^{-1}\right)^{3}-\left(\frac{0^{2}}{2}-\frac{0^{3}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{2\log(x)^{2}\left(3-4\log(x)\right)}{3}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}