Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int r-r^{2}\mathrm{d}r
Evaluate the indefinite integral first.
\int r\mathrm{d}r+\int -r^{2}\mathrm{d}r
Integrate the sum term by term.
\int r\mathrm{d}r-\int r^{2}\mathrm{d}r
Factor out the constant in each of the terms.
\frac{r^{2}}{2}-\int r^{2}\mathrm{d}r
Since \int r^{k}\mathrm{d}r=\frac{r^{k+1}}{k+1} for k\neq -1, replace \int r\mathrm{d}r with \frac{r^{2}}{2}.
\frac{r^{2}}{2}-\frac{r^{3}}{3}
Since \int r^{k}\mathrm{d}r=\frac{r^{k+1}}{k+1} for k\neq -1, replace \int r^{2}\mathrm{d}r with \frac{r^{3}}{3}. Multiply -1 times \frac{r^{3}}{3}.
\frac{1}{2}\times \left(2\ln(x)\ln(10)^{-1}\right)^{2}-\frac{1}{3}\times \left(2\ln(x)\ln(10)^{-1}\right)^{3}-\left(\frac{0^{2}}{2}-\frac{0^{3}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{2\log(x)^{2}\left(3-4\log(x)\right)}{3}
Simplify.