Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. θ
Tick mark Image

Similar Problems from Web Search

Share

\int r^{2}\mathrm{d}r
Evaluate the indefinite integral first.
\frac{r^{3}}{3}
Since \int r^{k}\mathrm{d}r=\frac{r^{k+1}}{k+1} for k\neq -1, replace \int r^{2}\mathrm{d}r with \frac{r^{3}}{3}.
\frac{1}{3}\times \left(2\cos(\theta )\right)^{3}-\frac{0^{3}}{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{8\left(\cos(\theta )\right)^{3}}{3}
Simplify.