Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{1}x^{2}y^{2}dy\mathrm{d}x
Multiply x and x to get x^{2}.
\int _{0}^{1}x^{2}y^{3}d\mathrm{d}x
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\int x^{2}y^{3}d\mathrm{d}x
Evaluate the indefinite integral first.
y^{3}d\int x^{2}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
y^{3}d\times \frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{y^{3}dx^{3}}{3}
Simplify.
\frac{1}{3}y^{3}d\times 1^{3}-\frac{1}{3}y^{3}d\times 0^{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{y^{3}d}{3}
Simplify.