Evaluate
\frac{15}{8}=1.875
Share
Copied to clipboard
\int _{0}^{1}x\left(\left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\mathrm{d}x
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x^{2}+1\right)^{3}.
\int _{0}^{1}x\left(x^{6}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\int _{0}^{1}x\left(x^{6}+3x^{4}+3x^{2}+1\right)\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\int _{0}^{1}x^{7}+3x^{5}+3x^{3}+x\mathrm{d}x
Use the distributive property to multiply x by x^{6}+3x^{4}+3x^{2}+1.
\int x^{7}+3x^{5}+3x^{3}+x\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{7}\mathrm{d}x+\int 3x^{5}\mathrm{d}x+\int 3x^{3}\mathrm{d}x+\int x\mathrm{d}x
Integrate the sum term by term.
\int x^{7}\mathrm{d}x+3\int x^{5}\mathrm{d}x+3\int x^{3}\mathrm{d}x+\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{8}}{8}+3\int x^{5}\mathrm{d}x+3\int x^{3}\mathrm{d}x+\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{7}\mathrm{d}x with \frac{x^{8}}{8}.
\frac{x^{8}}{8}+\frac{x^{6}}{2}+3\int x^{3}\mathrm{d}x+\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}. Multiply 3 times \frac{x^{6}}{6}.
\frac{x^{8}}{8}+\frac{x^{6}}{2}+\frac{3x^{4}}{4}+\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 3 times \frac{x^{4}}{4}.
\frac{x^{8}}{8}+\frac{x^{6}}{2}+\frac{3x^{4}}{4}+\frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{x^{2}}{2}+\frac{3x^{4}}{4}+\frac{x^{6}}{2}+\frac{x^{8}}{8}
Simplify.
\frac{1^{2}}{2}+\frac{3}{4}\times 1^{4}+\frac{1^{6}}{2}+\frac{1^{8}}{8}-\left(\frac{0^{2}}{2}+\frac{3}{4}\times 0^{4}+\frac{0^{6}}{2}+\frac{0^{8}}{8}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{15}{8}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}