Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{100}\mathrm{d}x
Evaluate the indefinite integral first.
\frac{x^{101}}{101}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{100}\mathrm{d}x with \frac{x^{101}}{101}.
\frac{1^{101}}{101}-\frac{0^{101}}{101}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1}{101}
Simplify.