Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{1}x^{4}+2x^{2}-8\mathrm{d}x
Use the distributive property to multiply x^{2}+4 by x^{2}-2 and combine like terms.
\int x^{4}+2x^{2}-8\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{4}\mathrm{d}x+\int 2x^{2}\mathrm{d}x+\int -8\mathrm{d}x
Integrate the sum term by term.
\int x^{4}\mathrm{d}x+2\int x^{2}\mathrm{d}x+\int -8\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{5}}{5}+2\int x^{2}\mathrm{d}x+\int -8\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{x^{5}}{5}+\frac{2x^{3}}{3}+\int -8\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 2 times \frac{x^{3}}{3}.
\frac{x^{5}}{5}+\frac{2x^{3}}{3}-8x
Find the integral of -8 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{1^{5}}{5}+\frac{2}{3}\times 1^{3}-8-\left(\frac{0^{5}}{5}+\frac{2}{3}\times 0^{3}-8\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{107}{15}
Simplify.