Evaluate
1100
Quiz
Integration
5 problems similar to:
\int _ { 0 } ^ { 1 } ( 6 t ^ { 2 } + 4 t + 6 ) ( 120 t + 40 ) d t
Share
Copied to clipboard
\int _{0}^{1}720t^{3}+720t^{2}+880t+240\mathrm{d}t
Use the distributive property to multiply 6t^{2}+4t+6 by 120t+40 and combine like terms.
\int 720t^{3}+720t^{2}+880t+240\mathrm{d}t
Evaluate the indefinite integral first.
\int 720t^{3}\mathrm{d}t+\int 720t^{2}\mathrm{d}t+\int 880t\mathrm{d}t+\int 240\mathrm{d}t
Integrate the sum term by term.
720\int t^{3}\mathrm{d}t+720\int t^{2}\mathrm{d}t+880\int t\mathrm{d}t+\int 240\mathrm{d}t
Factor out the constant in each of the terms.
180t^{4}+720\int t^{2}\mathrm{d}t+880\int t\mathrm{d}t+\int 240\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{3}\mathrm{d}t with \frac{t^{4}}{4}. Multiply 720 times \frac{t^{4}}{4}.
180t^{4}+240t^{3}+880\int t\mathrm{d}t+\int 240\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply 720 times \frac{t^{3}}{3}.
180t^{4}+240t^{3}+440t^{2}+\int 240\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply 880 times \frac{t^{2}}{2}.
180t^{4}+240t^{3}+440t^{2}+240t
Find the integral of 240 using the table of common integrals rule \int a\mathrm{d}t=at.
180\times 1^{4}+240\times 1^{3}+240\times 1+440\times 1^{2}-\left(180\times 0^{4}+240\times 0^{3}+240\times 0+440\times 0^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
1100
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}