Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 5u^{2}+\pi ^{2}\mathrm{d}u
Evaluate the indefinite integral first.
\int 5u^{2}\mathrm{d}u+\int \pi ^{2}\mathrm{d}u
Integrate the sum term by term.
5\int u^{2}\mathrm{d}u+\int \pi ^{2}\mathrm{d}u
Factor out the constant in each of the terms.
\frac{5u^{3}}{3}+\int \pi ^{2}\mathrm{d}u
Since \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} for k\neq -1, replace \int u^{2}\mathrm{d}u with \frac{u^{3}}{3}. Multiply 5 times \frac{u^{3}}{3}.
\frac{5u^{3}}{3}+\pi ^{2}u
Find the integral of \pi ^{2} using the table of common integrals rule \int a\mathrm{d}u=au.
\frac{5}{3}\times 1^{3}+\pi ^{2}\times 1-\left(\frac{5}{3}\times 0^{3}+\pi ^{2}\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{5}{3}+\pi ^{2}
Simplify.