Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 2x^{2}-3\cos(x)+1\mathrm{d}x
Evaluate the indefinite integral first.
\int 2x^{2}\mathrm{d}x+\int -3\cos(x)\mathrm{d}x+\int 1\mathrm{d}x
Integrate the sum term by term.
2\int x^{2}\mathrm{d}x-3\int \cos(x)\mathrm{d}x+\int 1\mathrm{d}x
Factor out the constant in each of the terms.
\frac{2x^{3}}{3}-3\int \cos(x)\mathrm{d}x+\int 1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 2 times \frac{x^{3}}{3}.
\frac{2x^{3}}{3}-3\sin(x)+\int 1\mathrm{d}x
Use \int \cos(x)\mathrm{d}x=\sin(x) from the table of common integrals to obtain the result.
\frac{2x^{3}}{3}-3\sin(x)+x
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{2}{3}\times 1^{3}-3\sin(1)+1-\left(\frac{2}{3}\times 0^{3}-3\sin(0)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1}{3}\left(5-9\sin(1)\right)
Simplify.