Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \sqrt{x}+\sqrt[3]{x^{2}}\mathrm{d}x
Evaluate the indefinite integral first.
\int \sqrt{x}\mathrm{d}x+\int x^{\frac{2}{3}}\mathrm{d}x
Integrate the sum term by term.
\frac{2x^{\frac{3}{2}}}{3}+\int x^{\frac{2}{3}}\mathrm{d}x
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify.
\frac{2x^{\frac{3}{2}}}{3}+\frac{3x^{\frac{5}{3}}}{5}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{2}{3}}\mathrm{d}x with \frac{3x^{\frac{5}{3}}}{5}.
\frac{2}{3}\times 1^{\frac{3}{2}}+\frac{3}{5}\times 1^{\frac{5}{3}}-\left(\frac{2}{3}\times 0^{\frac{3}{2}}+\frac{3}{5}\times 0^{\frac{5}{3}}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{19}{15}
Simplify.