Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{1}\sqrt{1-\left(\sqrt{2}\right)^{2}\left(y^{\frac{1}{2}}\right)^{2}}\mathrm{d}x
Expand \left(\sqrt{2}y^{\frac{1}{2}}\right)^{2}.
\int _{0}^{1}\sqrt{1-\left(\sqrt{2}\right)^{2}y^{1}}\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply \frac{1}{2} and 2 to get 1.
\int _{0}^{1}\sqrt{1-2y^{1}}\mathrm{d}x
The square of \sqrt{2} is 2.
\int _{0}^{1}\sqrt{1-2y}\mathrm{d}x
Calculate y to the power of 1 and get y.
\int \sqrt{1-2y}\mathrm{d}x
Evaluate the indefinite integral first.
\sqrt{1-2y}x
Find the integral of \sqrt{1-2y} using the table of common integrals rule \int a\mathrm{d}x=ax.
\left(1-2y\right)^{\frac{1}{2}}\times 1-\left(1-2y\right)^{\frac{1}{2}}\times 0
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\sqrt{1-2y}
Simplify.