Evaluate
\sqrt{1-2y}
Differentiate w.r.t. y
-\frac{1}{\sqrt{1-2y}}
Share
Copied to clipboard
\int _{0}^{1}\sqrt{1-\left(\sqrt{2}\right)^{2}\left(y^{\frac{1}{2}}\right)^{2}}\mathrm{d}x
Expand \left(\sqrt{2}y^{\frac{1}{2}}\right)^{2}.
\int _{0}^{1}\sqrt{1-\left(\sqrt{2}\right)^{2}y^{1}}\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply \frac{1}{2} and 2 to get 1.
\int _{0}^{1}\sqrt{1-2y^{1}}\mathrm{d}x
The square of \sqrt{2} is 2.
\int _{0}^{1}\sqrt{1-2y}\mathrm{d}x
Calculate y to the power of 1 and get y.
\int \sqrt{1-2y}\mathrm{d}x
Evaluate the indefinite integral first.
\sqrt{1-2y}x
Find the integral of \sqrt{1-2y} using the table of common integrals rule \int a\mathrm{d}x=ax.
\left(1-2y\right)^{\frac{1}{2}}\times 1-\left(1-2y\right)^{\frac{1}{2}}\times 0
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\sqrt{1-2y}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}