Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{v^{2}}{2}\mathrm{d}v
Evaluate the indefinite integral first.
\frac{\int v^{2}\mathrm{d}v}{2}
Factor out the constant using \int af\left(v\right)\mathrm{d}v=a\int f\left(v\right)\mathrm{d}v.
\frac{v^{3}}{6}
Since \int v^{k}\mathrm{d}v=\frac{v^{k+1}}{k+1} for k\neq -1, replace \int v^{2}\mathrm{d}v with \frac{v^{3}}{3}.
\frac{1^{3}}{6}-\frac{0^{3}}{6}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1}{6}
Simplify.