Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 6t^{2}-3t^{4}\mathrm{d}t
Evaluate the indefinite integral first.
\int 6t^{2}\mathrm{d}t+\int -3t^{4}\mathrm{d}t
Integrate the sum term by term.
6\int t^{2}\mathrm{d}t-3\int t^{4}\mathrm{d}t
Factor out the constant in each of the terms.
2t^{3}-3\int t^{4}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply 6 times \frac{t^{3}}{3}.
2t^{3}-\frac{3t^{5}}{5}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{4}\mathrm{d}t with \frac{t^{5}}{5}. Multiply -3 times \frac{t^{5}}{5}.
2\times \left(2^{\frac{1}{2}}\right)^{3}-\frac{3}{5}\times \left(2^{\frac{1}{2}}\right)^{5}-\left(2\times 0^{3}-\frac{3}{5}\times 0^{5}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{8\sqrt{2}}{5}
Simplify.