Evaluate
\frac{8\sqrt{2}}{5}\approx 2.2627417
Quiz
Integration
5 problems similar to:
\int _ { 0 } ^ { \sqrt { 2 } } ( 6 t ^ { 2 } - 3 t ^ { 4 } ) d t
Share
Copied to clipboard
\int 6t^{2}-3t^{4}\mathrm{d}t
Evaluate the indefinite integral first.
\int 6t^{2}\mathrm{d}t+\int -3t^{4}\mathrm{d}t
Integrate the sum term by term.
6\int t^{2}\mathrm{d}t-3\int t^{4}\mathrm{d}t
Factor out the constant in each of the terms.
2t^{3}-3\int t^{4}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply 6 times \frac{t^{3}}{3}.
2t^{3}-\frac{3t^{5}}{5}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{4}\mathrm{d}t with \frac{t^{5}}{5}. Multiply -3 times \frac{t^{5}}{5}.
2\times \left(2^{\frac{1}{2}}\right)^{3}-\frac{3}{5}\times \left(2^{\frac{1}{2}}\right)^{5}-\left(2\times 0^{3}-\frac{3}{5}\times 0^{5}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{8\sqrt{2}}{5}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}