Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 2x^{2}+4x-10\mathrm{d}x
Evaluate the indefinite integral first.
\int 2x^{2}\mathrm{d}x+\int 4x\mathrm{d}x+\int -10\mathrm{d}x
Integrate the sum term by term.
2\int x^{2}\mathrm{d}x+4\int x\mathrm{d}x+\int -10\mathrm{d}x
Factor out the constant in each of the terms.
\frac{2x^{3}}{3}+4\int x\mathrm{d}x+\int -10\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 2 times \frac{x^{3}}{3}.
\frac{2x^{3}}{3}+2x^{2}+\int -10\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 4 times \frac{x^{2}}{2}.
\frac{2x^{3}}{3}+2x^{2}-10x
Find the integral of -10 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{2}{3}\times \left(\frac{1}{3}\right)^{3}+2\times \left(\frac{1}{3}\right)^{2}-10\times \frac{1}{3}-\left(\frac{2}{3}\times 0^{3}+2\times 0^{2}-10\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{250}{81}
Simplify.