Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{\frac{1}{2}}64x^{3}+48x^{2}+12x+1\mathrm{d}x
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(4x+1\right)^{3}.
\int 64x^{3}+48x^{2}+12x+1\mathrm{d}x
Evaluate the indefinite integral first.
\int 64x^{3}\mathrm{d}x+\int 48x^{2}\mathrm{d}x+\int 12x\mathrm{d}x+\int 1\mathrm{d}x
Integrate the sum term by term.
64\int x^{3}\mathrm{d}x+48\int x^{2}\mathrm{d}x+12\int x\mathrm{d}x+\int 1\mathrm{d}x
Factor out the constant in each of the terms.
16x^{4}+48\int x^{2}\mathrm{d}x+12\int x\mathrm{d}x+\int 1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 64 times \frac{x^{4}}{4}.
16x^{4}+16x^{3}+12\int x\mathrm{d}x+\int 1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 48 times \frac{x^{3}}{3}.
16x^{4}+16x^{3}+6x^{2}+\int 1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 12 times \frac{x^{2}}{2}.
16x^{4}+16x^{3}+6x^{2}+x
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}x=ax.
16\times \left(\frac{1}{2}\right)^{4}+16\times \left(\frac{1}{2}\right)^{3}+6\times \left(\frac{1}{2}\right)^{2}+\frac{1}{2}-\left(16\times 0^{4}+16\times 0^{3}+6\times 0^{2}+0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
5
Simplify.