Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{2}+\sin(x)\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int \sin(x)\mathrm{d}x
Integrate the sum term by term.
\frac{x^{3}}{3}+\int \sin(x)\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}-\cos(x)
Use \int \sin(x)\mathrm{d}x=-\cos(x) from the table of common integrals to obtain the result.
\frac{1}{3}\times \left(\frac{1}{2}\pi \right)^{3}-\cos(\frac{1}{2}\pi )-\left(\frac{0^{3}}{3}-\cos(0)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{\pi ^{3}}{24}+1
Simplify.