Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 2\cos(x)+\sin(x)-1\mathrm{d}x
Evaluate the indefinite integral first.
\int 2\cos(x)\mathrm{d}x+\int \sin(x)\mathrm{d}x+\int -1\mathrm{d}x
Integrate the sum term by term.
2\int \cos(x)\mathrm{d}x+\int \sin(x)\mathrm{d}x+\int -1\mathrm{d}x
Factor out the constant in each of the terms.
2\sin(x)+\int \sin(x)\mathrm{d}x+\int -1\mathrm{d}x
Use \int \cos(x)\mathrm{d}x=\sin(x) from the table of common integrals to obtain the result.
2\sin(x)-\cos(x)+\int -1\mathrm{d}x
Use \int \sin(x)\mathrm{d}x=-\cos(x) from the table of common integrals to obtain the result.
2\sin(x)-\cos(x)-x
Find the integral of -1 using the table of common integrals rule \int a\mathrm{d}x=ax.
2\sin(\frac{1}{2}\pi )-\cos(\frac{1}{2}\pi )-\frac{\pi }{2}-\left(2\sin(0)-\cos(0)-0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
3-\frac{\pi }{2}
Simplify.