Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{\sin(x)}{2}\mathrm{d}x
Evaluate the indefinite integral first.
\frac{\int \sin(x)\mathrm{d}x}{2}
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
-\frac{\cos(x)}{2}
Use \int \sin(x)\mathrm{d}x=-\cos(x) from the table of common integrals to obtain the result.
-\frac{1}{2}\cos(\frac{1}{2}\pi )+\frac{1}{2}\cos(0)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1}{2}
Simplify.