Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 4x-5x\mathrm{d}x
Evaluate the indefinite integral first.
\int 4x\mathrm{d}x+\int -5x\mathrm{d}x
Integrate the sum term by term.
4\int x\mathrm{d}x-5\int x\mathrm{d}x
Factor out the constant in each of the terms.
2x^{2}-5\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 4 times \frac{x^{2}}{2}.
2x^{2}-\frac{5x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -5 times \frac{x^{2}}{2}.
-\frac{x^{2}}{2}
Simplify.
-\frac{4^{2}}{2}+\frac{\left(-5\right)^{2}}{2}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{9}{2}
Simplify.