Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-4}^{7}x^{3}+x^{2}-x-1\mathrm{d}x
Use the distributive property to multiply x^{2}-1 by x+1.
\int x^{3}+x^{2}-x-1\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x+\int -x\mathrm{d}x+\int -1\mathrm{d}x
Integrate the sum term by term.
\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x-\int x\mathrm{d}x+\int -1\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{4}+\int x^{2}\mathrm{d}x-\int x\mathrm{d}x+\int -1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{x^{4}}{4}+\frac{x^{3}}{3}-\int x\mathrm{d}x+\int -1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{4}}{4}+\frac{x^{3}}{3}-\frac{x^{2}}{2}+\int -1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1 times \frac{x^{2}}{2}.
\frac{x^{4}}{4}+\frac{x^{3}}{3}-\frac{x^{2}}{2}-x
Find the integral of -1 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{7^{4}}{4}+\frac{7^{3}}{3}-\frac{7^{2}}{2}-7-\left(\frac{\left(-4\right)^{4}}{4}+\frac{\left(-4\right)^{3}}{3}-\frac{\left(-4\right)^{2}}{2}-\left(-4\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{7733}{12}
Simplify.