Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 3x^{3}-x\mathrm{d}x
Evaluate the indefinite integral first.
\int 3x^{3}\mathrm{d}x+\int -x\mathrm{d}x
Integrate the sum term by term.
3\int x^{3}\mathrm{d}x-\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{3x^{4}}{4}-\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 3 times \frac{x^{4}}{4}.
\frac{3x^{4}}{4}-\frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1 times \frac{x^{2}}{2}.
\frac{3}{4}\times 36^{4}-\frac{36^{2}}{2}-\left(\frac{3}{4}\left(-36\right)^{4}-\frac{\left(-36\right)^{2}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
0
Simplify.