Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int -5x^{2}-3x-2\mathrm{d}x
Evaluate the indefinite integral first.
\int -5x^{2}\mathrm{d}x+\int -3x\mathrm{d}x+\int -2\mathrm{d}x
Integrate the sum term by term.
-5\int x^{2}\mathrm{d}x-3\int x\mathrm{d}x+\int -2\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{5x^{3}}{3}-3\int x\mathrm{d}x+\int -2\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -5 times \frac{x^{3}}{3}.
-\frac{5x^{3}}{3}-\frac{3x^{2}}{2}+\int -2\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -3 times \frac{x^{2}}{2}.
-\frac{5x^{3}}{3}-\frac{3x^{2}}{2}-2x
Find the integral of -2 using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{5}{3}\times 1^{3}-\frac{3}{2}\times 1^{2}-2-\left(-\frac{5}{3}\left(-3\right)^{3}-\frac{3}{2}\left(-3\right)^{2}-2\left(-3\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{128}{3}
Simplify.