Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 6x^{2}+4x\mathrm{d}x
Evaluate the indefinite integral first.
\int 6x^{2}\mathrm{d}x+\int 4x\mathrm{d}x
Integrate the sum term by term.
6\int x^{2}\mathrm{d}x+4\int x\mathrm{d}x
Factor out the constant in each of the terms.
2x^{3}+4\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 6 times \frac{x^{3}}{3}.
2x^{3}+2x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 4 times \frac{x^{2}}{2}.
2\times \left(\frac{1}{2}\right)^{3}+2\times \left(\frac{1}{2}\right)^{2}-\left(2\left(-3\right)^{3}+2\left(-3\right)^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{147}{4}
Simplify.