Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. z
Tick mark Image

Similar Problems from Web Search

Share

\int _{-2}^{z}\frac{1}{6}+\frac{1}{6}t^{2}\mathrm{d}t
Use the distributive property to multiply \frac{1}{6} by 1+t^{2}.
\int \frac{1+t^{2}}{6}\mathrm{d}t
Evaluate the indefinite integral first.
\int \frac{1}{6}\mathrm{d}t+\int \frac{t^{2}}{6}\mathrm{d}t
Integrate the sum term by term.
\int \frac{1}{6}\mathrm{d}t+\frac{\int t^{2}\mathrm{d}t}{6}
Factor out the constant in each of the terms.
\frac{t+\int t^{2}\mathrm{d}t}{6}
Find the integral of \frac{1}{6} using the table of common integrals rule \int a\mathrm{d}t=at.
\frac{t}{6}+\frac{t^{3}}{18}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply \frac{1}{6} times \frac{t^{3}}{3}.
\frac{z}{6}+\frac{z^{3}}{18}-\left(\frac{1}{6}\left(-2\right)+\frac{\left(-2\right)^{3}}{18}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{z}{6}+\frac{z^{3}}{18}+\frac{7}{9}
Simplify.