Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 12x+4x-x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int 12x\mathrm{d}x+\int 4x\mathrm{d}x+\int -x^{2}\mathrm{d}x
Integrate the sum term by term.
12\int x\mathrm{d}x+4\int x\mathrm{d}x-\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
6x^{2}+4\int x\mathrm{d}x-\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 12 times \frac{x^{2}}{2}.
6x^{2}+2x^{2}-\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 4 times \frac{x^{2}}{2}.
6x^{2}+2x^{2}-\frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
8x^{2}-\frac{x^{3}}{3}
Simplify.
8\times 6^{2}-\frac{6^{3}}{3}-\left(8\left(-2\right)^{2}-\frac{\left(-2\right)^{3}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{544}{3}
Simplify.