Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-2}^{2}\left(x^{2}\right)^{2}-8x^{2}+16\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-4\right)^{2}.
\int _{-2}^{2}x^{4}-8x^{2}+16\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\int x^{4}-8x^{2}+16\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{4}\mathrm{d}x+\int -8x^{2}\mathrm{d}x+\int 16\mathrm{d}x
Integrate the sum term by term.
\int x^{4}\mathrm{d}x-8\int x^{2}\mathrm{d}x+\int 16\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{5}}{5}-8\int x^{2}\mathrm{d}x+\int 16\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{x^{5}}{5}-\frac{8x^{3}}{3}+\int 16\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -8 times \frac{x^{3}}{3}.
\frac{x^{5}}{5}-\frac{8x^{3}}{3}+16x
Find the integral of 16 using the table of common integrals rule \int a\mathrm{d}x=ax.
16x-\frac{8x^{3}}{3}+\frac{x^{5}}{5}
Simplify.
16\times 2-\frac{8}{3}\times 2^{3}+\frac{2^{5}}{5}-\left(16\left(-2\right)-\frac{8}{3}\left(-2\right)^{3}+\frac{\left(-2\right)^{5}}{5}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{512}{15}
Simplify.