Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{4}-x+2\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{4}\mathrm{d}x+\int -x\mathrm{d}x+\int 2\mathrm{d}x
Integrate the sum term by term.
\int x^{4}\mathrm{d}x-\int x\mathrm{d}x+\int 2\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{5}}{5}-\int x\mathrm{d}x+\int 2\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{x^{5}}{5}-\frac{x^{2}}{2}+\int 2\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1 times \frac{x^{2}}{2}.
\frac{x^{5}}{5}-\frac{x^{2}}{2}+2x
Find the integral of 2 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{1^{5}}{5}-\frac{1^{2}}{2}+2\times 1-\left(\frac{\left(-2\right)^{5}}{5}-\frac{\left(-2\right)^{2}}{2}+2\left(-2\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{141}{10}
Simplify.