Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int -x^{2}+4-x-2\mathrm{d}x
Evaluate the indefinite integral first.
\int -x^{2}\mathrm{d}x+\int 4\mathrm{d}x+\int -x\mathrm{d}x+\int -2\mathrm{d}x
Integrate the sum term by term.
-\int x^{2}\mathrm{d}x+\int 4\mathrm{d}x-\int x\mathrm{d}x+\int -2\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{x^{3}}{3}+\int 4\mathrm{d}x-\int x\mathrm{d}x+\int -2\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
-\frac{x^{3}}{3}+4x-\int x\mathrm{d}x+\int -2\mathrm{d}x
Find the integral of 4 using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{x^{3}}{3}+4x-\frac{x^{2}}{2}+\int -2\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1 times \frac{x^{2}}{2}.
-\frac{x^{3}}{3}+4x-\frac{x^{2}}{2}-2x
Find the integral of -2 using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{x^{3}}{3}+2x-\frac{x^{2}}{2}
Simplify.
-\frac{1^{3}}{3}+2\times 1-\frac{1^{2}}{2}-\left(-\frac{\left(-2\right)^{3}}{3}+2\left(-2\right)-\frac{\left(-2\right)^{2}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{9}{2}
Simplify.