Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-2}^{0}8x^{3}+7x^{4}-3x^{5}-20x^{2}\mathrm{d}x
Use the distributive property to multiply x^{2}-2x by 10x+x^{2}-3x^{3} and combine like terms.
\int 8x^{3}+7x^{4}-3x^{5}-20x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int 8x^{3}\mathrm{d}x+\int 7x^{4}\mathrm{d}x+\int -3x^{5}\mathrm{d}x+\int -20x^{2}\mathrm{d}x
Integrate the sum term by term.
8\int x^{3}\mathrm{d}x+7\int x^{4}\mathrm{d}x-3\int x^{5}\mathrm{d}x-20\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
2x^{4}+7\int x^{4}\mathrm{d}x-3\int x^{5}\mathrm{d}x-20\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 8 times \frac{x^{4}}{4}.
2x^{4}+\frac{7x^{5}}{5}-3\int x^{5}\mathrm{d}x-20\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply 7 times \frac{x^{5}}{5}.
2x^{4}+\frac{7x^{5}}{5}-\frac{x^{6}}{2}-20\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}. Multiply -3 times \frac{x^{6}}{6}.
2x^{4}+\frac{7x^{5}}{5}-\frac{x^{6}}{2}-\frac{20x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -20 times \frac{x^{3}}{3}.
2\times 0^{4}+\frac{7}{5}\times 0^{5}-\frac{0^{6}}{2}-\frac{20}{3}\times 0^{3}-\left(2\left(-2\right)^{4}+\frac{7}{5}\left(-2\right)^{5}-\frac{\left(-2\right)^{6}}{2}-\frac{20}{3}\left(-2\right)^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{128}{15}
Simplify.