Evaluate
-\frac{128}{15}\approx -8.533333333
Share
Copied to clipboard
\int _{-2}^{0}8x^{3}+7x^{4}-3x^{5}-20x^{2}\mathrm{d}x
Use the distributive property to multiply x^{2}-2x by 10x+x^{2}-3x^{3} and combine like terms.
\int 8x^{3}+7x^{4}-3x^{5}-20x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int 8x^{3}\mathrm{d}x+\int 7x^{4}\mathrm{d}x+\int -3x^{5}\mathrm{d}x+\int -20x^{2}\mathrm{d}x
Integrate the sum term by term.
8\int x^{3}\mathrm{d}x+7\int x^{4}\mathrm{d}x-3\int x^{5}\mathrm{d}x-20\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
2x^{4}+7\int x^{4}\mathrm{d}x-3\int x^{5}\mathrm{d}x-20\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 8 times \frac{x^{4}}{4}.
2x^{4}+\frac{7x^{5}}{5}-3\int x^{5}\mathrm{d}x-20\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply 7 times \frac{x^{5}}{5}.
2x^{4}+\frac{7x^{5}}{5}-\frac{x^{6}}{2}-20\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}. Multiply -3 times \frac{x^{6}}{6}.
2x^{4}+\frac{7x^{5}}{5}-\frac{x^{6}}{2}-\frac{20x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -20 times \frac{x^{3}}{3}.
2\times 0^{4}+\frac{7}{5}\times 0^{5}-\frac{0^{6}}{2}-\frac{20}{3}\times 0^{3}-\left(2\left(-2\right)^{4}+\frac{7}{5}\left(-2\right)^{5}-\frac{\left(-2\right)^{6}}{2}-\frac{20}{3}\left(-2\right)^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{128}{15}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}