Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 6-y-\frac{y^{2}}{8}\mathrm{d}y
Evaluate the indefinite integral first.
\int 6\mathrm{d}y+\int -y\mathrm{d}y+\int -\frac{y^{2}}{8}\mathrm{d}y
Integrate the sum term by term.
\int 6\mathrm{d}y-\int y\mathrm{d}y-\frac{\int y^{2}\mathrm{d}y}{8}
Factor out the constant in each of the terms.
6y-\int y\mathrm{d}y-\frac{\int y^{2}\mathrm{d}y}{8}
Find the integral of 6 using the table of common integrals rule \int a\mathrm{d}y=ay.
6y-\frac{y^{2}}{2}-\frac{\int y^{2}\mathrm{d}y}{8}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y\mathrm{d}y with \frac{y^{2}}{2}. Multiply -1 times \frac{y^{2}}{2}.
6y-\frac{y^{2}}{2}-\frac{y^{3}}{24}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{2}\mathrm{d}y with \frac{y^{3}}{3}. Multiply -\frac{1}{8} times \frac{y^{3}}{3}.
6\times 4-\frac{4^{2}}{2}-\frac{4^{3}}{24}-\left(6\left(-12\right)-\frac{\left(-12\right)^{2}}{2}-\frac{\left(-12\right)^{3}}{24}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{256}{3}
Simplify.