Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{5}+6x-7x^{8}\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{5}\mathrm{d}x+\int 6x\mathrm{d}x+\int -7x^{8}\mathrm{d}x
Integrate the sum term by term.
\int x^{5}\mathrm{d}x+6\int x\mathrm{d}x-7\int x^{8}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{6}}{6}+6\int x\mathrm{d}x-7\int x^{8}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}.
\frac{x^{6}}{6}+3x^{2}-7\int x^{8}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 6 times \frac{x^{2}}{2}.
\frac{x^{6}}{6}+3x^{2}-\frac{7x^{9}}{9}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{8}\mathrm{d}x with \frac{x^{9}}{9}. Multiply -7 times \frac{x^{9}}{9}.
\frac{251^{6}}{6}+3\times 251^{2}-\frac{7}{9}\times 251^{9}-\left(\frac{\left(-100\right)^{6}}{6}+3\left(-100\right)^{2}-\frac{7}{9}\left(-100\right)^{9}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{6152602105682061900273}{2}
Simplify.