Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int -3x^{2}+11x+25\mathrm{d}x
Evaluate the indefinite integral first.
\int -3x^{2}\mathrm{d}x+\int 11x\mathrm{d}x+\int 25\mathrm{d}x
Integrate the sum term by term.
-3\int x^{2}\mathrm{d}x+11\int x\mathrm{d}x+\int 25\mathrm{d}x
Factor out the constant in each of the terms.
-x^{3}+11\int x\mathrm{d}x+\int 25\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -3 times \frac{x^{3}}{3}.
-x^{3}+\frac{11x^{2}}{2}+\int 25\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 11 times \frac{x^{2}}{2}.
-x^{3}+\frac{11x^{2}}{2}+25x
Find the integral of 25 using the table of common integrals rule \int a\mathrm{d}x=ax.
-5^{3}+\frac{11}{2}\times 5^{2}+25\times 5-\left(-\left(-1,5\right)^{3}+\frac{11}{2}\left(-1,5\right)^{2}+25\left(-1,5\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{637}{4}
Simplify.