Evaluate
57
Share
Copied to clipboard
\int _{-1}^{2}4x^{2}-20x+25\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
\int 4x^{2}-20x+25\mathrm{d}x
Evaluate the indefinite integral first.
\int 4x^{2}\mathrm{d}x+\int -20x\mathrm{d}x+\int 25\mathrm{d}x
Integrate the sum term by term.
4\int x^{2}\mathrm{d}x-20\int x\mathrm{d}x+\int 25\mathrm{d}x
Factor out the constant in each of the terms.
\frac{4x^{3}}{3}-20\int x\mathrm{d}x+\int 25\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 4 times \frac{x^{3}}{3}.
\frac{4x^{3}}{3}-10x^{2}+\int 25\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -20 times \frac{x^{2}}{2}.
\frac{4x^{3}}{3}-10x^{2}+25x
Find the integral of 25 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{4}{3}\times 2^{3}-10\times 2^{2}+25\times 2-\left(\frac{4}{3}\left(-1\right)^{3}-10\left(-1\right)^{2}+25\left(-1\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
57
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}