Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 2x+4-2x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int 2x\mathrm{d}x+\int 4\mathrm{d}x+\int -2x^{2}\mathrm{d}x
Integrate the sum term by term.
2\int x\mathrm{d}x+\int 4\mathrm{d}x-2\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
x^{2}+\int 4\mathrm{d}x-2\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 2 times \frac{x^{2}}{2}.
x^{2}+4x-2\int x^{2}\mathrm{d}x
Find the integral of 4 using the table of common integrals rule \int a\mathrm{d}x=ax.
x^{2}+4x-\frac{2x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -2 times \frac{x^{3}}{3}.
2^{2}+4\times 2-\frac{2}{3}\times 2^{3}-\left(\left(-1\right)^{2}+4\left(-1\right)-\frac{2}{3}\left(-1\right)^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
9
Simplify.